Системы кондиционирования в поездах

0
8575

Система кондиционирования воздуха (СКВ) пассажирского вагона предназначена для подачи и обработки свежего воздуха, его обеззараживания с целью предотвращения распространения инфекций и болезнетворных бактерий и обеспечения комфортных условий для пассажиров, машинистов и поездной бригады.

Основное требование к системам кондиционирования воздуха на железнодорожном транспорте — стабильность поддержания заданных параметров микроклимата в поезде, независимо от метеорологических условий.

Особенности систем кондиционирования в поездах

Энергоэффективность. Одной из задач, стоящих перед СКВ на железнодорожном транспорте, является минимизация энергопотребления кондиционера. Это связано с тем, что для питания кондиционера используется напряжение 220 В и ниже, которое в поезде можно получить или от контактной сети, или от аккумуляторов.

Электропоезд практически всегда получает электричество от контактной сети переменного тока, напряжение в которой 25 кВ (от 20 до 35 кВ). Возможны два способа понижения вольтажа. Во первых, трансформатор. Как результат, получим необходимое напряжение с минимальными потерями. Однако трансформаторы стоят достаточно дорого, плюс к тому возникают сложности с их установкой и обслуживанием по причине их большого веса и габаритов. Во вторых, получение электричества от колес поезда через генератор. Но в этом случае получаем значительные потери энергии в цепочке: контактная сеть — двигатель — колесная пара — генератор.

В случае контактной сети постоянного тока напряжением 3 кВ (от 2,2 до 4 кВ) возможно использование преобразователей тока, однако их стоимость также чрезвычайно высока. Применение аккумуляторов для получения низкого напряжения на борту поезда, как и в случае с трансформаторами, ограничивается размерами и массой аккумуляторов, а также относительно низкой емкостью батарей.

Таким образом, в любом варианте каждый киловатт низковольтного электричества обходится достаточно дорого, на порядок дороже, чем в условиях стационарного размещения. Этим и обусловлено повышенное внимание к энергопотреблению СКВ.

Массогабаритные ограничения. Особенности проектирования СКВ для транспорта, связанные с массой и габаритами системы, очевидны. При этом следует отметить тот факт, что при малых габаритах вагона тепловая нагрузка его достаточно высока, и необходимая холодопроизводительность составляет до 30 кВт на вагон.

Во-первых, это создает проблему комфортной подачи холодного воздуха в купе: дальнобойкость струи должна быть низка, а минимальная температура подаваемого воздуха ограниченна (16 °С). Как правило, это решается установкой потолочного воздухораспределителя большой площади с перфорацией.

Во-вторых, появляется необходимость в рециркуляции. Для кондиционирования вагона, несомненно, удобно использовать единую установку на весь вагон, которая также обеспечит и подачу свежего воздуха согласно нормативам — от 10 до 20 м3/ч — в зависимости от наружной температуры. Однако расхода вентиляционного воздуха оказывается недостаточно для отвода требуемого количества тепла. Как следствие, в вагонах формируют рециркуляционный поток воздуха, забираемый из каждого купе в СКВ для охлаждения и подаваемый обратно. То есть для СКВ вагонов поездов характерны относительно мощные потоки воздуха с кратностью воздухообмена в купе, равной 20.

Различные климатические условия. Еще одной характерной чертой СКВ на железной дороге является необходимость работы в различных климатических условиях. Путь следования поезда может проходить через несколько климатических зон, и в вагоне постоянно должен сохраняться комфортный микроклимат. Обычно принимают два варианта стандартных условий окружающей среды:

  • температура 32 °С, влажность 60%;
  • температура 40 °С, влажность 20%.

Особенности эксплуатации. К таким особенностям относятся аэродинамические удары. При прохождении встречного поезда или въезде в тоннель образуется ударная волна, способная нанести вред системе кондиционирования вагона. Для защиты от перепадов давления применяют СКВ с двумя параллельными каналами на всасывании воздуха из окружающей среды. При прохождении тоннеля давление снаружи повышается, клапан основного всасывающего воздуховода закрывается, тем временем открывается параллельный воздуховод со встроенным в него вентилятором, который подает приточный воздух к кондиционеру в необходимом количестве.

Еще одним критичным параметром СКВ в железнодорожном составе является удароустойчивость системы. Наибольший удар (наибольшее ускорение) в вагонах возникает при их сцепке, когда вагоны с небольшой скоростью соударяются и останавливаются практически мгновенно. При этом оборудование внутри вагона, в том числе и СКВ, не должно разрушаться, сохраняя полную работоспособность.

Индивидуальное регулирование температуры в купе. Наконец, современные вагоны класса «люкс» и первого класса должны оборудоваться системами индивидуального регулирования температуры воздуха.

Выдержки из технических требований для перспективных пассажирских вагонов локомотивной тяги

При проектировании систем кондиционирования для поездов следует учитывать требования к системам климата вагона, окнам и дверям (раздел 8 документа «Перспективные пассажирские вагоны локомотивной тяги. Технические требования», утвержденного Министерством путей сообщения):

8.3. Система обеспечения климата (СОК) предназначена для обеспечения требуемого микроклимата в пассажирских и служебных помещениях вагона в следующих режимах:

  • отопление;
  • вентиляция;
  • охлаждение.

8.3.1. Состав СОК пассажирских вагонов:

  • система отопления (жидкостная, воздушная, комбинированная);
  • установка кондиционирования воздуха (УКВ) с обязательными режимами вентиляции, охлаждения и теплонасосного отопления;
  • система вентиляции, включающая в себя вентагрегат с устройствами для забора наружного воздуха, воздухораспределения, рециркуляции и удаления отработанного воздуха;
  • средства аварийного отопления и вентиляции;
  • средства автоматического управления, контроля и диагностики отказов;
  • средства ручного управления (в случае выхода из строя системы автоматики).

8.8.1. В купейных вагонах 2 го класса и в вагонах с креслами для сидения 1-го и 2-го классов обеспечение требуемых комфортных параметров микроклимата должно осуществляться автоматически по всем помещениям вагона.

8.8.2. В вагонах «люкс» и купейных вагонах 1 го класса должна быть предусмотрена возможность индивидуального регулирования параметров микроклимата в режимах отопления, охлаждения и вентиляции для обеспечения оптимальных условий по желанию пассажиров.

8.8.3. В спальных вагонах 3-го класса и в вагонах с креслами для сидения 3-го и 4-го классов система обеспечения климата должна быть оснащена необходимым комплексом оборудования, обеспечивающим допустимые параметры микроклимата в помещениях вагона.

Таблица 8.1. Диапазон требуемых температур воздуха в вагоне в зависимости от температуры наружного воздуха.
Диапазон температур наружного воздуха,°С Температуры воздуха в помещении, °С
От –40 до +20 22
От +20 до +40 22…26
От +40 до +48 26…28

8.9. СОК должна обеспечивать равномерное температурное поле в помещениях вагона.

8.9.1. Для вагонов «люкс» и 1-го класса разность температур по длине и высоте салона (купе) в установившемся режиме не должна превышать 2°С.

8.9.2. Для вагонов 2-го и 3-го классов величина должна быть не более 3°С.

8.10. Температура воздуха в помещениях вагона.

8.10.1. В пассажирских (салон, купе) и служебных помещениях вагона номинальное значение температуры воздуха должно соответствовать данным, представленным в таблице 8.1.

При температурах наружного воздуха –40 ° < tн < –50 °С допускается снижение температуры воздуха в пассажирских помещениях вагона, но не ниже +18°С (для вагонов «люкс» и 1-го класса — не менее 20°С).

Должна быть предусмотрена возможность изменения температуры по отношению к номинальному значению в диапазоне ±2°С с шагом 1°С.

8.10.2. В вагонах «люкс» и 1-го класса (с купейной компоновкой) должна быть предусмотрена возможность индивидуального регулирования температуры воздуха внутри купе в диапазоне от +18 до +28°С с шагом не более 1°С.

8.10.3. Для вагонов «люкс» и 1 го класса при работе СОК в автоматическом режиме температура воздуха в пассажирском помещении (на высоте 1 м от пола) может отличаться (по времени) от заданной величины не более чем на ±1°С.

8.10.4. Для вагонов 2 го и 3 го классов эта величина не должна отличаться более чем на ±2°С.

8.10.5. Средняя температура воздуха в коридорах может отличаться от средней температуры воздуха в пассажирских помещениях не более чем на ±2 °С.

Таблица 8.2. Зависимость подачи наружного воздуха от его температуры
Температура наружного воздуха, °С Количество свежего воздуха на человека, м3
Выше +26 15
От –5 до +26 20
От –20 до +5 15
Ниже –20 10

8.10.6. Средняя температура воздуха в туалетах может отличаться от средней температуры воздуха в пассажирских помещениях не более чем на ±2°С (для туалетов с входом из тамбура не более чем на ±3°С), но при этом не должна быть ниже +16°С в условиях зимнего и переходного периодов года.

8.14. При работе СОК должны обеспечиваться нормы подачи наружного свежего воздуха в соответствии с таблицей 8.2.

8.16. Температура приточного воздуха, поступающего в пассажирские помещения, должна иметь следующие предельные температуры:

  • при отоплении — не более +35°С;
  • при предварительном нагреве (без пассажиров) — не более +55°С;
  • при охлаждении — не ниже +16°С;
  • при предварительном охлаждении (без пассажиров) — не ниже +12°С.

8.24. В пассажирских вагонах должен быть обеспечен подпор воздуха (превышение статического давления воздуха внутри вагона над статическим давлением воздуха снаружи вагона). Его величина должна быть положительной при расчетных скоростях движения и работе приточной системы вентиляции на всех режимах подачи наружного воздуха, а на стоянке составлять величину не менее 30 Па.

8.25. Скорость движения (подвижность) воздуха в зонах постоянного пребывания пассажиров (для вагонов всех классов) должна быть не более 0,2 м/с в зимний период, а при работе кондиционера в летний период не более 0,25 м/с.

Состав системы кондиционирования вагона

Система кондиционирования железнодорожного вагона состоит из моноблочного кондиционера и ультра­фиолетового обеззараживателя. Основная причина установки обеззараживателя — предотвращение разноса инфекций и загрязнений в рециркуляционном потоке воздуха.

В моноблочный кондиционер поступает свежий и рециркуляционный воздух. Смешанный воздух проходит через фильтр грубой очистки класса EU4 (согласно DIN 24 185), затем в зимнее время подогревается в водяном калорифере, в который поступает горячая вода из системы отопления. В переходный период нагрев осуществляется электрическим калорифером. В летнее время воздух охлаждается в поверхностном воздухоохладителе, после чего проходит через каплеуловитель для отделения влаги. После моноблочной установки воздух попадает в обеззараживатель, где проходит антибактерицидную обработку и затем раздается по вагону.

Влага из каплеуловителя собирается в емкость и отводится наружу. Существуют СКВ вагонов поездов, в которых благодаря близости испарителя и конденсатора в моноблоке конденсат впрыскивается в поток воздуха, охлаждающего конденсатор, за счет чего снижается температура конденсации и уменьшается нагрузка на кондиционер.

Моноблочный кондиционер

Рис. 1. Общий вид установки для кондиционирования воздуха производства ЗАО «ЛАНТЕП» для вагона поезда (изображение взято из книги В.А.Жарикова «Климатические системы пассажирских вагонов»
Рис. 1. Общий вид установки для кондиционирования воздуха производства ЗАО «ЛАНТЕП» для вагона поезда (изображение взято из книги В.А.Жарикова «Климатические системы пассажирских вагонов»

Моноблочный кондиционер представляет собой холодильную машину, состоящую из двух отсеков — испарительного и конденсаторного. В испарительном отсеке установлены: фильтр, водяной и электрический калориферы, воздухоохладитель, каплеотделитель и один или два центробежных вентилятора. В конденсаторном отсеке расположены один или два компрессора, как правило, спирального типа. СКВ одновременно выполняет функции и кондиционера (охлаждение воздуха) и вентиляционной установки (подача свежего воздуха, выброс вытяжного воздуха).

Моноблочный кондиционер (рис. 1) устанавливается в пространстве подшивного потолка тамбура вагона. Забор приточного вентиляционного воздуха осуществляется через решетки с боковых сторон симметрично с двух сторон. Также с боков забирается и воздух для охлаждения конденсатора. Физически воздухозаборные решетки размещаются над входными дверьми в вагон. Выброс воздуха из конденсатора — вертикально вверх. Подача подготовленного воздуха — горизонтально вдоль вагона по магистральным воздуховодам.

В основе работы кондиционера — цикл парокомпрессионной холодильной машины.

В теплообменнике-испарителе хладагент охлаждает воздух, который далее поступает непосредственно в вагон. На вход в испаритель приходит смесь воздуха — свежего наружного и рециркуляционного. Количество свежего воздуха определяется нормативами, а объем рециркуляции — минимальной температурой подаваемого в вагон воздуха.

Расчет системы кондиционирования вагона поезда

Точный расчет системы кондиционирования вагона поезда производится итеративным методом — для некоторых неизвестных величин сначала принимаются предполагаемые значения, после чего проверяются в расчете. При несовпадении производятся их коррекция и повторный расчет, после чего процедура повторяется. При совпадении расчет считается оконченным.

Ниже приводится расчет холодопроизводительности системы кондиционирования вагона поезда, в котором по ходу расчета задаются два параметра — влажность воздуха в купе и расход рециркуляционного потока воздуха. Последний проверяется, исходя из обеспечения температуры подаваемого в купе воздуха не ниже нормативной величины (16 °С). Влажность воздуха проверяется следующим образом. Как известно, при охлаждении воздуха холодной поверхностью на I d-диаграмме процесс идет по линии, исходящей из точки исходного состояния воздуха и идущей в сторону точки с насыщения (φ=100%) при температуре холодной поверхности. Теоретически процесс должен достигнуть конечной точки (с φ=100%). Однако на практике воздух «не успевает» дойти до φ=100% и «останавливается» на точке с φ=85…95%. Тем не менее очевидно, что все три точки (начальная, конечная теоретическая и конечная практическая) лежат на I d-диаграмме на одной прямой. Именно требование нахождения их на одной прямой и является условием проверки влажности воздуха в купе (в начальной точке).

Исходные данные:

Данные по вагону:
Количество человек в вагоне: nчел_ваг=38.
Норма воздуха на человека: Gчел = 15 м3/ч.
Площадь крыши: Sкрыш = 68 м2 .
Боковая площадь: Sбок = 111 м2.
Площадь пола: Sпол = 78 м2.
Торцевая площадь: Sторц = 15 м2.
Площадь окон: Sокно = 16 м2.

Площадь обшивки:

Sобш = Sкрыш + Sбок + Sпол + Sторц =272 м2.

Параметры окружающей среды (стандартные расчетные условия):
Расчетное давление: pрасч = 0,1 Мпа.
Температура наружного воздуха: tнар=32 °С.
Влажность наружного воздуха: φнар=60%.
Влагосодержание наружного воздуха (определяется по I d-диаграмме): dнар = 18,2 г/кг.
Энтальпия наружного воздуха (определяется по I d-диаграмме): iнар = 78,9 кДж/кг.
Плотность наружного воздуха (определяется по I d-диаграмме): ρ нар = 1,14 кг/м3.
Солнечная радиация (прямая и рассеянная) на широте г. Сочи (46 градусов):

Nрад_ср_46ш_прям=494 Вт/м2

Nрад_ср_46ш_расс=121 Вт/м2.

Параметры внутренней среды:
Поддерживаемая в вагоне температура: tваг=24°С.
Влажность, поддерживаемая в вагоне (принимается и проверяется далее): φваг=49%.
Влагосодержание воздуха в вагоне (определяется по I d диаграмме): dваг = 9,2 г/кг.
Энтальпия воздуха в вагоне (определяется по I d-диаграмме): iваг = 47,6 кДж/кг.
Плотность воздуха в вагоне (определяется по I d-диаграмме): ρ ваг = 1,17 кг/м3.
Минимально возможная температура подаваемого в вагон воздуха: tваг_под=16°С.
Влажность подаваемого в вагон воздуха: φваг_под=95% .
Энтальпия подаваемого воздуха: iваг_под= 43,7 кДж/кг .
Плотность подаваемого воздуха: ρ ваг_под = 1,20 кг/м3.

Термодинамические данные:
Теплоемкость воздуха: cвозд=1,005 кДж/(кг∙°С).
Теплоемкость воздуха, насыщенного водяными парами: cнас_пар=1,86 кДж/(кг∙°С).
Теплоемкость воды: cводы=4,2 кДж/(кг∙°С).
Скрытая теплота парообразования:

rводы=2,5∙103 кДж/кг.

Коэффициент теплопередачи обшивки:

Kобш=0,559 Вт/(м2∙°С).

Расчет необходимой холодопроизводительности

Для определения необходимой холодопроизводительности требуется определить теплопритоки (внутренние и внешние) на вагон. К внутренним относится тепло, выделяемое людьми и оборудованием вагона. При этом ощутимая (явная теплота) от людей отводится конвекцией, излучением и теплопроводностью, а скрытая — при испарении влаги с поверхности кожи, при дыхании. К внешним теплопритокам относятся притоки через ограждающие конструкции (окна, обшивку) и солнечная радиация, проникающая через остекленные поверхности.

Общий влагоприток (с учетом, что влагу выделяют только люди): Pваг=Pлюди=2,4 кг/ч.

Скрытый теплоприток от человека:

Nлюди_скр = rводы∙Pчел=43,3 Вт.

Полный теплоприток от человека:

Nчел_полн= Nлюди_скр+ Nлюди_явн =117,7 Вт.

Полный теплоприток от людей:

Nлюди_полн = nчел_ваг ∙ Nчел_полн=4,5 кВт.

Теплоприток от теплопроводности обшивки:

Nтпр_обш = Sобш ∙ (tнар –tваг)∙ Kобщ= 1,2 кВт.

Теплоприток через окна:

Принимаем, что в электропоезде двойное остекление из светопоглощающих стекол с коэффициентами поглощения и пропускания, равными:

Aокно = 0,4, Dокно = 0,4.

Коэффициент теплоотдачи снаружи αн=57 Вт/(м2∙°С) (что соответствует скорости поезда 72 км/ч), внутри: αв=8,7 Вт/(м2∙°С). Термическое сопротивление воздушной прослойки (толщина 10 мм):

RП=0,12 м2∙°С/Вт, стекла: RС=0,02 м2∙°С/Вт.

Термическое сопротивление на поверхностях:

Rα=1/αн + 1/αв = 0,132 м2∙°С/Вт.

Коэффициент теплопередачи окна:

KF=1/(Rα + RП + RС) = 3,67 Вт/(м2∙°С).

Теплоприток от теплопроводности окон:

Nтпр_окно= Sокно (tнар — tваг) kF =0,47 Вт.

Поток тепла в виде излучения на всю остекленную поверхность:

Nвсе_окна = Nрад_ср_46ш_прям ∙ Sокно/2 + Nрад_ср_46ш_расс ∙ Sокно = 5,9 кВт.

Принимаем предполагаемое значение рециркуляции в объеме (так, чтобы рассчитываемая ниже температура подаваемого воздуха не превышала 16 °С):

Gрец = 3730 м3/ч.

Общий расход воздуха, подаваемого в салон:

Gваг_вх = Gсв_возд + Gрец = 4,3∙103 м3/ч.

Притоки массы и тепла с наружным воздухом:

Сухой воздух:

Mсв_нар = ρнар ∙ Gсв_возд/1+dнар = 639 кг/ч.

Вода в наружном воздухе:

mвода_нар = mсв_нар ∙ dнар = 11,7 кг/ч.

Влажный воздух: mвв_нар = mсв_нар + mвода_нар = 651 кг/ч.

Тепло: Nнар = mсв_нар ∙ iнар = 14 кВт.

Параметры смеси наружного и рециркуляционного воздуха:

Энтальпия: iсм= (mсв_нар ∙ iнар + mсв_рец ∙ iваг)/(mсв_нар + +mсв_рец) = 51,9 кДж/кг.

Влагосодержание: dсм= (mсв_нар ∙ dнар + mсв_рец ∙dваг)/(mсв_нар + mсв_рец) = 10,4 г/кг.

Температура (определяется по I d-диаграмме):

Tсм= 25°С.

Влажность (определяется по I d-диаграмме):

Φсм = 52 %.

Мощность вентилятора: Nвент_исп=1,5 кВт.

Параметры смеси после нагрева в вентиляторе испарителя:

Температура: tсм1= tсм + Nвент_исп/cвозд ∙ mвв_см = 26°С.

Энтальпия: iсм1 = iсм + Nвент_исп/mcв_см =52,7 кДж/кг.

Влагосодержание: dсм1 = dсм= 10,4 г/кг.

Параметры воздуха, поступающего в салон:

Энтальпия: iваг_вх = iваг -Nваг/mcв_см =38,3 кДж/кг.

Влагосодержание: dваг_вх = dваг -Pваг/mcв_см = 8,7 г/кг.

Температура: tваг_вх = t (iваг_вх, dваг_вх) = 16,1°С.

Плотность (определяется по I d-диаграмме):

Ρваг_вх = 1,20 кг/м3.

Значение tваг_вх превышает 16°С, значит, выше принят достаточный расход рециркуляционного воздуха Gрец.

Убедимся, что точки, характеризующие состояние воздуха после вентилятора, на поверхности испарителя и воздуха, подаваемого в салон, лежат на одной прямой (температура поверхности испарителя, исходя из опыта, принята tпов_исп = 10°С, а влажность воздуха в непосредственной близости от поверхности испарителя составляет φпов_исп =100%; по этим параметрам с помощью i d-диаграммы определяется энтальпия поверхностного слоя iпов_исп):

(iваг_вх — iпов_исп)/(iсм1 — iваг_вх) = 0,613.
(tваг_вх — t пов_исп)/(tсм1 — tваг_вх) = 0,613.

Полученные значения совпадают, а значит, указанные выше три точки лежат на одной прямой, то есть изначально была выбрана правильная влажность воздуха в вагоне.

Необходимая холодопроизводительность системы кондиционирования:

Nконд = mвв_см ∙ (iсм1 — iваг_вх) = 20 кВт.

Таким образом, с запасом 20% следует принять холодопроизводительность кондиционера, равной:

_Nконд_расч = 24 кВт._

При этом в купе вагона поезда будут обеспечены следующие условия:

Температура: tваг = 24°С.
Влажность: φваг = 47%.

Требование индивидуального регулирования температуры в купе

Дисплей системы управления компании SIEMENS (фото автора)
Рис. 2. Дисплей системы управления компании SIEMENS (фото автора)

Согласно «Санитарным правилам по организации пассажирских перевозок на железнодорожном транспорте» (СП 2.5.1198–03) в каждом купе пассажирских вагонов класса «люкс» и 1 го класса должны устанавливаться системы индивидуального регулирования температуры воздуха в диапазоне от +18 до +28 °С с шагом не более 1°С. Таким образом, пассажирам предоставляется возможность самим выбирать температуру в купе независимо от режима работы центральной климатической системы вагона.

Сейчас климатические системы вагонов всех классов обеспечивают автоматическое поддержание температуры воздуха в помещениях в расчете на «среднего человека»: зимой и в переходные периоды года — на уровне 22±2°С, а летом 24±2°С. Кроме того, автоматика позволяет с центрального пульта изменять установленное значение на 2°С с шагом 1°С. Таким образом, зимой и в переходные периоды года в помещениях вагонов может быть температура воздуха в пределах +18…+26°С, а летом +20…+28°С.

Следовательно, диапазон регулирования температур соответствует требованиям СП 2.5.1198–03. Однако он будет один для всех пассажиров вагона. В силу индивидуальных особенностей, физиологического состояния на данный момент ощущение комфорта по температуре у пассажиров различно. Поэтому для пассажиров вагонов «люкс» и 1 го класса предоставляется дополнительное оплачиваемое удобство.

Автоматическое регулирование температуры воздуха в купе

Одним из наиболее сложных вопросов при создании СКВ с автоматизированным индивидуальным регулированием температуры в каждом купе является выбор параметров регулирования производительностью кондиционера.

Наиболее простое и очевидное решение — плавное регулирование холодопроизводительности кондиционера посредством, например, инверторного привода.

При индивидуальном регулировании температуры подаваемого в купе воздуха проблема сводится к выбору базовой точки для летнего и зимнего режимов функционирования системы, от которой далее следует отталкиваться доводчикам. Так, значение температуры приточного воздуха при работе в режиме «охлаждение» можно выбрать по минимально допустимому значению подаваемого в купе воздуха, равному 16°C. При работе в режиме «отопление» или «тепловой насос» базовая температура приточного воздуха выбирается максимально возможной, то есть 26 или 28°C.

Такое техническое решение имеет ряд недостатков с точки зрения поддержания заданных значений при малых величинах теплоизбытков и теплопотерь (в диапазоне температур наружного воздуха от 0 до 20°C).

Другое решение — введение понятия «базового», или «ведущего», купе и ориентирование центрального кондиционера на заданные в нем параметры. При этом ведущее купе определяется следующим образом: в летний период выбирается купе с минимальной температурой, выбранной пассажирами, в переходный и зимний периоды — с максимальной температурой.

Юрий Хомутский, технический редактор журнала «МИР КЛИМАТА»
Дисплей системы управления компании SIEMENS (фото автора)