Многих людей удивляет, что кондиционеры вырабатывают холода в три раза больше потребляемой мощности. Они не верят в это, вполне обоснованно полагая, что КПД не может быть 300%. Но еще меньше людей представляют себе, что такое на самом деле КПД кондиционера. И уж совсем немногие в курсе реальной эффективности кондиционеров по сравнению с их теоретическими возможностями. Давайте разберемся.
Степень термодинамического совершенства кондиционера
Как известно, эффективность холодильного цикла Карно выражается формулой E = Tх/(Tг-Tх), где Tx и Tг — выраженные в градусах Кельвина температуры соответственно холодной и горячей среды (в случае кондиционирования — это температуры воздуха в комнате и на улице).
Чтобы получить конкретную величину предельной эффективности необходимо выбрать эти температуры. Заметим, что кондиционеры проходят сертификацию европейской ассоциации EUROVENT при стандартных условиях, ею же и заданных. Для комфортных кондиционеров до 12 кВт условия следующие: Tх = 27 С = 300K в помещении и Tг = 35 С = 308K в окружающей среде.
Итак, предельная эффективность равна Emax = Tх/(Tг-Tх) = 300/(308—300) = 37,5. А значит, при использовании компрессора, потребляющего 1 кВт электроэнергии, мы должны получить в идеале 37,5 кВт холода. Еще раз отметим, что эта цифра учитывает затраченную мощность только компрессора, без учета энергопотребления вентиляторов внутреннего и наружного блоков, а также системы автоматики (контроллера). Но заглянем в каталоги кондиционеров. Что же мы видим? При мощности компрессора, к примеру, 4,6 кВт холодопроизводительность составляет 14,6 кВт, т. е. реальная эффективность составляет 14,6/4,6 = 3,2! А должно быть 37.5.
Теперь мы можем ответить на вопрос, какова же степень термодинамического совершенства кондиционеров. Она равна отношению реального холодильного коэффициента к идеальному. В нашем случае имеем: 3,2/37,5∙100% = 8,5%.
Итак, степень термодинамического совершенства современных кондиционеров составляет порядка
В чем же дело?
Самым распространенным мнением является то, что основные потери в кондиционере происходят в компрессоре как в главном энергопотребителе цикла. Однако, не углубляясь в процессы сжатия хладагента, скажем, что КПД современных компрессоров лежит в диапазоне
Идеализация ТРВ даст аналогичный эффект: в частности, более эффективные электронные ТРВ позволяют заметно увеличить холодильный коэффициент при частичной тепловой нагрузке, но при полной нагрузке энергосбережение едва ли заметно.
Наконец, из основных компонентов кондиционера остаются два теплообменных агрегата — испаритель и конденсатор. Действительно, именно в процессах теплообмена скрыты огромные потери эффективности кондиционеров. И дело вовсе не в их конструкции. Проблема заключается в физике процесса.
Проблема теплообмена
Для процесса теплообмена необходима разность температур. Например, в конденсаторе хладагент остывает и конденсируется, следовательно, окружающий воздух должен быть холоднее хладагента. Чем выше разность температур между потоками, тем выше эффективность теплообмена. Самая высокая разность температур в конденсаторе на входе в него. Она составляет около 40°C. В этих условиях получаем самый эффективный теплообмен. Далее хладагент контактирует с воздухом, и его температура становится все ближе и ближе к температуре воздуха. Одновременно снижается температурный напор, а значит, и эффективность теплообмена.
Теоретически, чтобы хладагент достиг температуры окружающего воздуха, нам понадобится теплообменник бесконечной длины. На практике, конечно, длина ограничена разумными габаритами аппарата, а следовательно, температура хладагента на выходе из конденсатора не достигает температуры окружающего воздуха. Опыт показывает, что эта разность составляет около 10°C, иногда достигая 15°C (для примера пусть это будет 12°C). Аналогичная ситуация имеет место и в испарителе. Что это означает?
Это значит, что если в EUROVENT заданы температуры внутреннего и наружного воздуха соответственно 27 и 35°C, то температуры хладагента в контуре будут следующие: температура испарения
Подставляя новые числа, получаем: E = 288/(320—288) = 9.0, а степень совершенства равна 9.0/37.5 = 24%. Таким образом, в конденсаторе и испарителе теряется 76% энергоэффективности кондиционера! Во всех остальных вместе взятых элементах теряется менее 20% эффективности.
На рис. 1 заштрихованные площади условно изображают затраченную на получение холода энергию. Красная площадь, соответствующая реальному циклу Карно, заметно больше синей, соответствующей теоретическому. Следовательно, и затраты на получение единицы холода в реальной ситуации гораздо выше (в 4 раза).
В то же время площадь под заштрихованными прямоугольниками изображает холодопроизводительность. То, что площадь под синим прямоугольником больше, означает, что и холодопроизводительность теоретического цикла выше (всего на 4%).
Таким образом, переходя от теории к практике, одновременно и растет стоимость единицы холода, и снижается количество получаемого холода. Заметим, что, соотнося пропорции роста и снижения, неверно говорить, что такой-то кондиционер теоретически может генерировать в несколько раз больше холода. Правильнее сказать, что он незначительно увеличит свою холодопроизводительность, но при этом его энергопотребление сократится в 4 раза.
Заключение
Подводя итоги, сделаем некоторые важные выводы.
Во-первых, не стоит удивляться, что холодопроизводительность кондиционера в 3 раза выше, чем его потребляемая мощность. В идеале это соотношение должно быть более чем в 10 раз больше.
Во-вторых, принципиальной преградой к существенному улучшению энергоэффективности современных кондиционеров являются процессы теплообмена. Их изучение и создание более эффективных теплообменников способны резко увеличить холодильный коэффициент кондиционеров.
Наконец, в-третьих, совершенствование кондиционеров приведет не к росту холодопроизводительности отдельно взятой модели, а к существенному снижению ее энергопотребления при практически той же генерируемой холодильной мощности.
По материалам Вестника УКЦ АПИК"