Общие сведения
В 2020 году пандемия резко обвалила продажи систем кондиционирования бытового и коммерческого назначения на таких растущих рынках, как Китай, Индия, Юго-Восточная Азия и Латинская Америка. В США, Японии, странах Европы и в Австралии за счет перехода на домашнюю занятость и благодаря государственным субсидиям спрос на бытовые кондиционеры воздуха сохранился на доковидном уровне или даже немного вырос. Во второй половине 2020 года ускорилось восстановление китайского рынка коммерческих систем кондиционирования, однако в остальном мире ситуация в коммерческом сегменте остается сложной.
На сегменты коммерческого и промышленного холода пандемия не оказала заметного негативного влияния. Напротив, она способствовала росту спроса за счет увеличения потребности в хранении и перевозке лекарств и вакцин и повышения загрузки холодильных цепочек. Из-за пандемии люди стали совершать больше покупок онлайн и работать из дома. Быстрое распространение базовых станций мобильной связи стандарта 5G и дата-центров, нуждающихся в поддержании определенных температурных параметров, создает новые возможности для производителей компрессоров.
Значительные изменения в мировой индустрии продовольственной розницы способствуют увеличению спроса на холодильные компрессоры. И на сложившихся рынках США и Европы, и в развивающихся странах Азии спрос на холодильные компрессоры очень устойчив. В Европе, кроме того, заметную часть спроса обеспечивает потребность в модернизации, связанная с ускорением вывода фторсодержащих хладагентов из употребления.
На европейском рынке мощным стимулом для компрессорной индустрии является беспрецедентное распространение технологии теплового насоса. Не вызывает также сомнений влияние мер по защите окружающей среды, предпринимаемых в Европе, на направление развития глобального рынка компрессоров.
Ротационные компрессоры
Объем глобального рынка компрессоров ротационного типа в 2020 году уменьшился на 8,1% по сравнению с предыдущим годом, составив 194,32 млн штук. Из них 154,07 млн компрессоров приходятся на Китай, 16,07 млн – на Юго-Восточную Азию, 3,99 млн – на Индию, 5,28 млн – на страны Европы, 3,82 млн – на Японию, 2,23 млн – на Ближний Восток, 2,15 млн – на Бразилию и 1,62 млн компрессоров – на США.
Производство ротационных компрессоров сосредоточено в Азии, прежде всего – в Китае, а также в Таиланде, Японии и Малайзии.
С переносом производства кондиционеров воздуха за пределы Китая некоторые компании, занимающиеся выпуском компрессоров, приняли решение открыть фабрики в Индии и Юго-Восточной Азии.
Среди ведущих брендов ротационных компрессоров можно выделить: Guangdong Meizhi Compressor Company (GMCC), Gree (Landa), Rechi, Panasonic, Mitsubishi Electric, Highly, LG, Samsung и AVIC (Sanyo).
Область применения компрессоров ротационного типа охватывает кондиционеры воздуха, тепловые насосы и холодильное оборудование. Запрос рынка на ротационные компрессоры высокой мощности привел к разработке сдвоенных моделей. Такие компрессоры сегодня используются в бытовых и полупромышленных кондиционерах воздуха, чиллерах, VRF-системах и тепловых насосах «воздух-вода».
Сегмент тепловых насосов предоставляет производителям компрессоров широкие возможности для развития бизнеса. Совершенствование технологии ротационного сжатия увеличило теплопроизводительность тепловых насосов, благодаря чему стало возможно их использование даже в холодном климате. В холодильном оборудовании применяются сдвоенные компрессоры, характеристики которых позволяют конкурировать с компрессорами спирального типа.
Низкая стоимость способствует дальнейшему распространению компрессоров, использующих ротационную технологию сжатия. В США быстро развивающимися областями применения для них стали кондиционирование воздуха в «домах на колесах» и коммерческие моноблоки (PTAC).
В Европе ужесточение требований, касающихся фторсодержащих парниковых газов, способствует увеличению доли бытовых кондиционеров воздуха, использующих хладагент R32. Несмотря на то, что R32 является лишь временной альтернативой хладагентам с более высоким ПГП, он все чаще применяется основными производителями тепловых насосов «воздух-вода».
Растет востребованность ротационных компрессоров на хладагенте R290 (пропане) для использования в тепловых насосах. В Европе увеличивается число сушилок для одежды, представляющих собой тепловые насосы на R290.
В Китае, где прогнозируется ускорение перехода с хладагентов R22 и R410A на R32, ожидается, что к 2025 году рынок будет поделен поровну между устройствами на R32 и R410A.
В Японии выбор альтернативного хладагента сделан в пользу R32, уже получившего широкое распространение.
Что касается Юго-Восточной Азии, то в Таиланде, Индонезии и Вьетнаме велика доля бытовых кондиционеров воздуха на R32. В то же время, на Филиппинах, в Малайзии, Сингапуре и других странах региона продажи устройств на R32 только набирают обороты.
В январе 2025 года в Индии вступит в силу запрет на производство кондиционеров воздуха, использующих ГХФУ-хладагенты (в том числе R22), импорт подобного оборудования запрещен с 2015 года. В стране быстро растет спрос на ротационные компрессоры для хладагента R32, а местные производители приступили к выпуску бытовых кондиционеров воздуха на R290 (пропане).
В 2015 году Саудовская Аравия запретила ввоз и производство бытовых сплит-систем, использующих ГХФУ, включая R22 и R123. Стабильные продажи на Ближнем Востоке показывают разработанные в качестве альтернативы ротационные компрессоры на R410A, предназначенные для тропического климата и условий пустыни.
Несколько производителей разработали новые компрессоры ротационного типа для холодильной техники, использующие в качестве хладагента смеси гидрофторолефинов (ГФО) с низким потенциалом глобального потепления (ПГП).
Спиральные компрессоры
Несмотря на сокращение рынка компрессоров спирального типа, по итогам 2020 года в этом сегменте ожидается небольшой рост продаж в денежном выражении. В традиционных областях применения спиральные компрессоры все чаще уступают место устройствам ротационного типа со сдвоенным ротором, при этом холодопроизводительность одинарного спирального компрессора постоянно увеличивается.
По оценке JARN, мировой спрос на спиральные компрессоры в 2020 году сократился на 2,3%. Крупнейший рынок устройств данного типа – США – вырос на 5,5%, в то время как Китай – второй по величине рынок спиральных компрессоров в мире, показал падение на 19,5%. Страны Европы (без учета России и Турции) продемонстрировали падение спроса на 10,9%, в Юго-Восточной Азии падение было катастрофическим.
Ведущим производителем спиральных компрессоров в мире является компания Emerson. Ей принадлежит почти половина рынка компрессоров спирального типа для систем кондиционирования воздуха, лидирует она и в холодильном сегменте. Кроме того, среди производителей и брендов спиральных компрессоров можно выделить Johnson Controls-Hitachi (Guangzhou), Panasonic (Dalian), Invotech, Daikin, Mitsubishi Electric, Danfoss, SCI и Bitzer.
На сегменте спиральных компрессоров благоприятно сказался рост востребованности полупромышленных кондиционеров воздуха, чиллеров и VRF-систем, а также тепловых насосов и холодильного оборудования.
Продолжается развитие технологии модульных чиллеров на базе компрессоров спирального типа. Компактность таких чиллеров делает их очень удобными при транспортировке и монтаже, а возможность параллельного подключения позволяет достичь большой холодопроизводительности.
С коммерческой точки зрения перспективным представляется сегмент спиральных компрессоров для тепловых насосов «воздух-вода», использующихся не только для отопления, но и для организации горячего водоснабжения. В настоящее время в тепловых насосах «воздух-вода» широко применяются спиральные компрессоры с питанием от однофазной электросети.
Кроме того, благодаря своей компактности и высокой производительности, спиральные компрессоры все чаще применяются в холодильном оборудовании. Япония экспортирует спиральные компрессоры, использующие в качестве хладагента диоксид углерода (СО2) в Европу и Австралию. Эти компрессоры могут работать как в тепловых насосах, так и в холодильной технике.
Набирают популярность гибридные транспортные средства. В этом сегменте спиральные компрессоры обладают огромным рыночным потенциалом, так как их электрический привод не создает никакой дополнительной нагрузки на двигатель автомобиля. Крупнейшие производители климатической техники объявили о начале выпуска компрессоров спирального типа для использования в кондиционерах собственного производства.
Большинство компрессоров спирального типа, применяющихся в системах кондиционирования воздуха за пределами Европы, Японии и США, все еще используют хладагент R22. Спиральные компрессоры для холодильного и морозильного оборудования, как правило, работают на R404A.
В Японии часто встречается холодильное и морозильное оборудование на R410A. Стандартом стало применение использующих диоксид углерода компрессоров в тепловых насосах «воздух-вода» Eco Cute. На отраслевых выставках в Европе и Китае демонстрировались образцы спиральных компрессоров на R32 и углеводородных хладагентах, однако массовое производство подобной техники пока не стартовало. Тем временем, в США в полупромышленных кондиционерах начинают использовать смесевые хладагенты на основе гидрофторолефинов (ГФО).
Компрессоры винтового типа
Из-за отмены и переноса ряда крупных проектов сегмент компрессоров винтового типа для систем кондиционирования просел на 8,4%, но продажи винтовых компрессоров для холодильного оборудования, несмотря ни на что, выросли на 6,2%.
Суммарный объем рынка компрессоров винтового типа в 2020 году оценивался в 122 000 единиц оборудования.
Последние несколько лет в сегменте винтовых компрессоров царит застой. В системах кондиционирования на двух крупнейших рынках – в Китае и Европе – данный тип компрессоров уступает в конкурентной борьбе спиральным компрессорам с возможностью параллельного подключения и устройствам центробежного типа с магнитной подвеской ротора. Тем не менее, в Азии (включая Китай) растут продажи винтовых компрессоров для средне- и низкотемпературного холода. Кроме того, в США и Китае энергоэффективные водоохлаждаемые чиллеры на базе инверторных винтовых компрессоров успешно конкурируют с холодильными машинами на основе компрессоров центробежного типа. Во многих странах растет сегмент винтовых компрессоров для использования в тепловых насосах, прежде всего – в водонагревателях коммерческого назначения, обслуживающих, например, гостиницы.
Повышение стандартов качества жизни способствует стабильному росту рынка охлажденного и замороженного продовольствия в развивающихся странах, таких как Китай, Индия, государства Юго-Восточной Азии. Потребность в оборудовании для холодильных цепочек возрастает, создавая новые бизнес-возможности для производителей винтовых компрессоров. Постоянно растет сегмент оборудования на базе винтовых компрессоров для специализированных областей применения, таких как судовые рефрижераторные установки.
Около 90% винтовых компрессоров относятся к сдвоенному типу. Одновинтовые компрессоры производят Vilter (Emerson), Mitsubishi Electric, Daikin. Среди ведущих производителей винтовых компрессоров сдвоенного типа стоит назвать Bitzer, Hanbell, Fusheng, Johnson Controls-Hitachi (Guangzhou), Trane, Carrier, YORK, Frascold, GEA и Howden. Трехроторные винтовые компрессоры выпускает только Carrier.
Поршневые компрессоры
В 2020 году мировой спрос на полугерметичные компрессоры поршневого типа оценивался в 572 900 единиц оборудования, что на 8% больше, чем в 2019 году. Спрос на герметичные поршневые компрессоры коммерческого назначения в 2020 году составил 20,9 млн единиц оборудования, показав рост на 5,4% по сравнению с предыдущим годом. Рост наблюдался в сегменте холодильного хранения.
Компрессоры поршневого типа имеют долгую историю и отличаются широким спектром областей применения: от холодильного оборудования до систем кондиционирования воздуха и тепловых насосов. В целом, продажи поршневых компрессоров в сегменте кондиционирования падают, зато в сегменте холодильного оборудования – непрерывно растут год от года. Диапазон холодопроизводительности поршневых компрессоров позволяет использовать их как в бытовых и полупромышленных холодильниках, так и в мощном коммерческом и промышленном оборудовании. С поршневыми компрессорами могут использоваться самые разные хладагенты. Для применения в холодильной технике некоторое время назад созданы герметичные компрессоры, рассчитанные на работу с природными хладагентами R290 (пропан), R600a (изобутан) и CO2 (диоксид углерода). Выпускаются также полупромышленные модели для работы с хладагентами на основе ГФО.
В Европе потребность перевода встраиваемых холодильных витрин на новые хладагенты создает новые возможности для производителей герметичных поршневых компрессоров. В индустрии наблюдается значительное число слияний и поглощений.
Тепловы насосы (включая устройства типа «воздух-вода»), использующие в качестве хладагента диоксид углерода, являются новым источником спроса на полугерметичные компрессоры поршневого типа.
Компрессоры центробежного типа
Объем мирового рынка компрессоров центробежного типа в 2020 году оценивался в 17 200 единиц оборудования, что на 6,8 меньше, чем в предыдущем году. При этом сегмент компрессоров с магнитной подвеской ротора вырос на 2,7% по сравнению с 2019 годом за счет спроса, порождаемого центрами обработки данных и фармацевтической промышленностью.
Два основных потребителя компрессоров центробежного типа – США и Китай, в этих же странах сосредоточен и основной объем производства таких устройств. Большинство центробежных компрессоров и чиллеров на их основе выпускают производители из США. Некоторые компании, специализирующиеся на изготовлении чиллеров, заказывают центробежные компрессоры как самостоятельный продукт у азиатских производителей. Другие изготавливают собственные компрессоры для своих чиллеров.
За прошедшие 10 лет чиллеры на базе компрессоров центробежного типа с магнитной подвеской ротора, получившие признание как энергоэффективные решения для кондиционирования зданий, показали значительный рост продаж.
Рынок оценил пониженное энергопотребление, низкий уровень шума и простоту обслуживания компрессоров с магнитной подвеской ротора. В некоторых областях применения эти устройства заменили традиционные центробежные и винтовые компрессоры. В Австралии доля чиллеров на базе центробежных компрессоров с магнитной подвеской составляет до 70% от всех продаж чиллеров. Велика их доля и на рынках Европы и США. Активно растет сегмент центробежных компрессоров с магнитной подвеской в Китае.
Основным хладагентом для компрессоров центробежного типа является R134a. Производители из США и Японии испытывают ГФО-хладагент R1234ze в качестве замены гидрофторуглеродам (ГФУ) и гидрохлорфторуглеродам (ГХФУ). Кроме того, в Японии разработаны экологичные чиллеры на базе центробежных компрессоров, использующих в качестве хладагента воздух или воду. Для компрессоров центробежного типа также доступен ГФО-хладагент с ультранизким ПГП (менее 1) R1233zd(F).
Прогноз состояния рынка
Ведущие страны мира приступили к массовой вакцинации, и эпидемиологическая ситуация в США, странах Европы и в Бразилии улучшается. С возобновлением деловой активности будет расти спрос и на компрессоры различных типов. Согласно прогнозам, сегменты ротационных и поршневых компрессоров восстановятся быстрее остальных и вернутся на доковидный уровень уже к концу 2021 года, восстановление других сегментов, как ожидается, потребует больше времени.
Основные направления развития технологий
Спиральные компрессоры
В последние годы заметно вырос интерес к экологичной продукции. В отношении систем кондиционирования воздуха и холодоснабжения действуют различные нормативные документы, призванные снизить нагрузку на окружающую среду в глобальном масштабе, сократить вредные выбросы в атмосферу путем перехода на новые хладагенты и уменьшить энергопотребление за счет поощрения повышения эффективности оборудования. Особое значение придается, в частности, развитию технологий, использующихся в компрессорах – ключевых компонентах систем кондиционирования воздуха и холодоснабжения.
Чтобы уменьшить энергопотребление таких систем, сократив тем самым парниковые выбросы, следует, в первую очередь, обратить внимание на компрессоры, потребляющие до 80% от всей энергии, идущей на питание системы. Стремление повысить эффективность компрессоров привело к появлению ротационных моделей для бытовых кондиционеров в 1960-70-х годах, винтовых компрессоров для чиллеров и холодильных систем в 1970-80-х годах, спиральных компрессоров для полупромышленных кондиционеров воздуха в 1980-х.
В наши дни практически везде традиционные поршневые компрессоры заменены устройствами ротационного типа. Исключение составляют лишь поршневые компрессоры малой мощности, использующиеся, в основном, в бытовых холодильниках. Основные принципы работы ротационного компрессора были сформулированы уже к началу XX века, однако для их практического воплощения требовались технологии высокоточной механической обработки для получения деталей сложной формы, создание надежного привода… Особенно важны тщательное соблюдение геометрии деталей и точность сборки для компрессоров винтового и спирального типов, поэтому своим появлением они во многом обязаны прогрессу технологий металлообработки.
В дополнение к уменьшению энергопотребления путем повышения эффективности, снижение парникового воздействия систем кондиционирования воздуха и холодоснабжения достигается за счет перехода на хладагенты с более низким потенциалом глобального потепления (ПГП). В частности, в бытовых холодильниках используют изобутан (R600a), в тепловых насосах, нагревающих воду для хозяйственно-бытовых нужд, применяют СО2, в мощном холодильном и морозильном оборудовании применяют аммиак (NH3), а в полупромышленных и бытовых кондиционерах воздуха — R32.
Ниже рассматриваются некоторые технологии, связанные с переводом спиральных компрессоров на новые хладагенты.
CO2 – использование в компрессорах, детандерах (расширителях), детандер-компрессорах
Во второй половине 1990-х годов усилилась озабоченность проблемой глобального потепления, и внимание привлекли системы кондиционирования воздуха и холодоснабжения, использующие в качестве хладагента диоксид углерода (CO2). Исследования показали возможность применения компрессоров для CO2 в автомобильных кондиционерах и тепловых насосах для нагрева воды.
В 2001 году компания Denso разработала спиральный компрессор для CO2 с герметичным корпусом низкого давления и нижним расположением механизма, и выпустила в продажу водонагреватели Eco Cute на его основе. После этого многие японские производители создали свои компрессоры для CO2 и вышли на рынок тепловых насосов для нагрева воды. Hitachi и Panasonic разработали компрессоры спирального типа в герметичном корпусе высокого давления, Mitsubishi Electric и Daikin представили ротационный компрессор также в герметичном корпусе высокого давления, а Sanyo создала двухступенчатый ротационный компрессор в герметичном корпусе промежуточного давления.
По сравнению с традиционными компрессорами систем кондиционирования воздуха и холодоснабжения, компрессор для CO2 отличается крайне высоким рабочим давлением и малым рабочим объемом. Чтобы обеспечить герметичность и устойчивость к высокому давлению предпринимались попытки увеличить прочность подвижной и неподвижной спиралей и повысить надежность подшипников.
С этой целью Mitsubishi Electric исследовала параметры скольжения осевых подшипников подвижной спирали, Panasonic изучала деформацию механизма в результате воздействия давления и температуры.
Кроме того, было проведено множество исследований возможности применения спиральных детандеров и детандер-компрессоров для рекуперации энергии в процессе расширения в сверхкритическом цикле охлаждения. Компания Hitachi разработала прототип CO2-расширителя (детандера) и детандер-компрессорного агрегата с расширителем с одной стороны и осевым компрессором с другой стороны, построив на их основе чиллер для демонстрации эффективности такого решения.
Аналогичный прототип был создан и в Mitsubishi Electric. По итогам его испытаний выяснилась важность снижения потерь давления в каждом элементе конструкции, а также предотвращения утечки тепла из осевого компрессора в расширитель для эффективности рекуперации и использования энергии расширения.
Panasonic сообщает о моделировании детандер-компрессора, объединяющего двухступенчатый ротационный детандер и спиральный компрессор. Изучение теплового насоса для нагрева воды, оборудованного таким детандер-компрессором и обычным компрессором, показало возможность повышения коэффициента производительности (COP) на величину до 15% за чет рекуперации энергии в ходе расширения и улучшения алгоритмов управления.
Исследования также показали возможность повысить эффективность компрессоров для CO2 за счет применения двухступенчатого сжатия. В 2011 году компания Mitsubishi Heavy Industries (MHI), создала двухступенчатый компрессор для CO2, используя механизм ротационного типа для ступени низкого давления и спиральный механизм для ступени высокого давления. Данный компрессор был установлен в тепловой насос для нагрева воды коммерческого назначения. В последствии подобные двухступенчатые компрессоры нашли применение в конденсаторных блоках для холодильного и морозильного оборудования.
В 2017 году компания Sanden впервые выпустила на рынок компрессоры на CO2, предназначенные для автомобильных кондиционеров.
Хладагенты с пониженным ПГП
В качестве меры противодействия глобальному потеплению индустрия климата и искусственного холода снижает энергопотребление оборудования, повышая его эффективность, и переходит на хладагенты с более низким ПГП.
На сегодняшний день наибольшее внимание привлекают умеренно горючие хладагенты R32, R447A, R454A и негорючий хладагент R466A в качестве замены R410A в кондиционерах воздуха, а также R448A, R449A и R463А как альтернатива R404A для использования в холодильной и морозильной технике.
В Японии в результате распространения хладагента R32 в качестве рабочего тела для бытовых и полупромышленных кондиционеров были разработаны компрессоры, наилучшим образом подходящие для работы с ним. Компания Daikin создала компрессор, отличающийся повышенной эффективностью и надежностью благодаря периодической смазке соприкасающихся частей спиралей и применению специальных масел, хорошо растворяющихся в R32 при низкой температуре. Для мульти-сплит-систем Mitsubishi Electric разработала компрессор с системой впрыска, препятствующей повышению температуры газа на линии нагнетания за счет подачи жидкого хладагента непосредственно в камеру всасывания до начала процесса сжатия. По сообщению компании, это решение предотвращает утечку холодильного масла, которое остается в герметично закрытом корпусе компрессора, а также сокращает потери из-за неэффективного сжатия.
В сегменте низкотемпературного оборудования также идет переход на хладагенты с пониженным ПГП. Для компрессорно-конденсаторных блоков компания Hitachi разработала инверторный компрессор повышенной эффективности с ассиметричной формой спирали и улучшенным портом нагнетания. Mitsubishi Electric предлагает компрессор, который может использовать как R410A, так и R463A, что позволяет организовать плавный переход на новый хладагент.
Исследуется возможность использования и природных хладагентов, таких как углеводороды и аммиак. Компания Emerson разработала спиральный компрессор с инверторным приводом, предназначенный для использования углеводородного хладагента R290. Конструкция, использующая корпус с низким давлением внутри, позволяет снизить объем заправки хладагента за счет меньшей растворимости R290 в холодильном масле и уменьшения количества газообразного хладагента внутри корпуса компрессора.
Mayekawa разработала компрессор на R290 с инжекторным охлаждением для коммерческих высокотемпературных тепловых насосов. Данный компрессор имеет взрывозащищенную конструкцию, отличающуюся повышенной эффективностью и надежностью. В то же время исследуется возможность применения аммиака в качестве хладагента, в частности, путем моделирования определяется оптимальная конфигурация обмотки из алюминиевой проволоки.
Практика показывает, что спиральная конструкция подходит для различных видов и областей применения: наддува, жидкостных насосов, двигателей, детандеров на основе органического цикла Ренкина, компрессоров топливных ячеек. Ожидается, что в будущем сфера ее использования расширится еще больше.
Компрессоры центробежного и винтового типов
Центробежные компрессоры
Вот уже почти столетие холодильные компрессоры центробежного типа используются в мощных системах отопления, вентиляции и кондиционирования воздуха, а также в холодильных установках промышленного назначения. На сегодняшний день диапазон холодопроизводительности центробежных компрессоров простирается от 210 до 19 350 кВт (60 – 5 500 холодильных тонн). Для решений, требующих большой холодильной мощности, компрессоры центробежного типа являются наилучшем решением с точки зрения стоимости и эффективности. Принцип действия таких устройств заключается в непрерывном преобразовании кинетической энергии вращения крыльчатки в давление, сжимающее газ. Конструкция компрессоров центробежного типа позволяет сжимать значительные объемы газа.
Недавно верхнюю границу диапазона производительности инновационных безмасляных компрессоров удалось поднять до 5075 кВт (1450 х. т.), что значительно расширило область их применения. Безмасляные технологии существенно повышают энергоэффективность компрессоров центробежного типа, в том числе и в нештатных режимах эксплуатации. По этой причине спрос на безмасляные компрессоры стремительно растет, сегодня на их долю приходится почти 30% всего рынка центробежных компрессоров для чиллеров.
Развитие технологии центробежных компрессоров
За последние десятилетия появилось множество технологических инноваций. Это и переход от систем с постоянной скоростью вращения к частотно-регулируемым приводам (VFD), и появление инновационных безмасляных компрессоров, использующих, в частности, активную магнитную подвеску, и создание высокоэффективных крыльчаток с 3D-лопатками, форма которых получена при помощи моделирования методами вычислительной гидродинамики, и внедрение новых эффективных хладагентов, сочетающих негорючесть с низким ПГП, таких как R1233zd(E). В результате энергоэффективность компрессоров центробежного типа существенно повысилась. Кроме того, сочетание безмасляной технологии с частотно-регулируемым приводом не только повысило эффективность и расширило область применения компрессоров, но и изменило их традиционную конструкцию.
От постоянной скорости вращения к регулируемой
Традиционный центробежный компрессор — одноступенчатый с повышающей передачей, приводящейся в движение двухполюсным индукционным электродвигателем переменного тока. Ведущие производители чиллеров в США, такие как Carrier, YORK и McQuay (Daikin Applied), применяли эту конструкцию на протяжении долгого времени, подобные модели выпускаются до сих пор. В то же время Trane традиционно использовала двух- или трехступенчатую конструкцию с прямым приводом от двухполюсного индукционного электродвигателя переменного тока с постоянной скоростью вращения. В компрессорах такой конструкции применяются хладагенты низкого давления.
В 1990-х годах из-за постепенного отказа от хлорфторуглеродных (ХФУ) и гидрохлорфторуглеродных (ГХФУ) хладагентов низкого давления, таких как R11 и R123, производители чиллеров из Японии и других стран Азии разработали двухступенчатые компрессоры, использующие хладагент среднего давления R134a. Привод таких компрессоров оснащается повышающей передачей, а в чиллер встраивается экономайзер для повышения эффективности. Сегодня такая конструкция стала стандартом для Азии. Для управления производительностью этих компрессоров используют (вместе или по отдельности) изменение положения лопаток направляющего аппарата (IGV) на входе и сопла (диффузоры) с изменяемой геометрией на выходе. Разработка различных способов управления геометрией сопла позволила существенно расширить эффективный рабочий диапазон компрессоров. В дополнение к перечисленному, производительность компрессора может управляться изменением скорости вращения. С этой целью существующие двухполюсные индукционные электродвигатели комплектуются системой частотного регулирования (VFD).
Безмасляные компрессоры с регулируемой скоростью
В начале 2000-х годов конструкция центробежных компрессоров существенно изменилась: появление инновационных безмасляных решений на основе высокоскоростных электродвигателей на постоянных магнитах и с частотным регулированием привода позволило отказаться от повышающей передачи и системы смазки.
На сегодняшний день существуют одно- и двухступенчатые компрессоры с прямым приводом на основе индукционных электродвигателей переменного тока или моторов на постоянных магнитах. В последнее время широкое распространение получили двухступенчатые компрессоры с расположением крыльчаток «спина-к-спине» для уменьшения нагрузки на безмасляные подшипники (магнитную подвеску). Помимо управления частотой вращения, для регулирования производительности таких компрессоров могут использоваться (вместе или по отдельности) направляющие аппараты (IGV) и сопла (диффузоры) с изменяемой геометрией.
Новые альтернативные хладагенты для чиллеров
Компрессоры центробежного типа рассчитаны на сжатие большого объема газа, и поэтому в них использовали, в основном, хладагенты низкого давления, для которых характерен больший объем всасывания на единицу холодильной мощности. Однако в настоящее время в центробежных компрессорах применяются и хладагенты среднего давления. При равной холодопроизводительности объем всасывания для хладагентов среднего давления примерно на 20% меньше, чем для хладагентов низкого давления, что позволяет уменьшить габариты компрессора и снизить его стоимость. С другой стороны, эффективность цикла у хладагентов низкого давления, как правило, выше. Выбор подходящего хладагента представляет собой поиск «золотой середины» между ПГП, горючестью и производительностью цикла.
Существующие альтернативные хладагенты перечислены в таблице.
Альтернативные хладагенты с низким ПГП для компрессоров большой мощности (по состоянию на 2021 год)
Тип компрессора | Давление | Существующий хладагент | Альтернатива | |||||
Код ASHRAE | ПГП | Код ASHRAE | ПГП | Класс опасности | Производительность | Эффективность | ||
Центробежный | низкое | R123 | 77 | R514A | 2 | B1 | Базовый уровень: R123 (=100%) | |
100% | 100% | |||||||
R1233zd(E) | 1 | A1 | 140% | 99-100% | ||||
R1224yd(Z) | 1 | A1 | 160% | 99% | ||||
Центробежный и винтовой | среднее | R134a | 1430 | R1234ze(E) | <1 | A2L | Базовый уровень: R134a (=100%) | |
74% | 100% | |||||||
R513A | 573 | A1 | 100% | 98% | ||||
R515B | 293 | A1 | 75% | 100% |
Показатели производительности определены путем термодинамических вычислений
Среди хладагентов низкого давления наиболее многообещающими вариантами представляются R1233zd(E) и R1224yd(Z), созданные для применения в чиллерах на базе компрессоров центробежного типа. Эти хладагенты не горючи, имеют низкий ПГП и по производительности сравнимы с R123. В 2014 году компания Trane Europe впервые представила линейку чиллеров на базе центробежных компрессоров, использующую R1233zd(E). Ведущие производители чиллеров, такие как YORK, Carrier и Daikin Applied также выпустили безмасляные чиллеры на R1233zd(E). Компания Ebara предлагает чиллеры с компрессорами центробежного типа на хладагенте R1224yd(Z), который рассматривается как альтернатива для R245fa.Показатели производительности определены путем термодинамических вычислений
Широкое распространение в Европе получил умеренно горючий (A2L) хладагент R1234ze(E), представляющий собой перспективную альтернативу хладагенту среднего давления R134a для использования в чиллерах водяного и воздушного охлаждения на базе как центробежных, так и винтовых компрессоров. Компания Mitsubishi Heavy Industrial Thermal Systems (MHI) использует R1234ze(E) в больших чиллерах на базе центробежных компрессоров холодопроизводительностью от 1000 до 8800 кВт. R513A чаще применяют там, где законодательство очень жестко ограничивает использование горючих хладагентов. Недавно был выпущен хладагент R515B, которому присвоен класс A1 (негорючий). Новинка, ПГП которой меньше, чем у R513A, предлагается в качестве замены R134a и представляет собой азеотропную смесь R1234ze(E) и R227ea. Даже с учетом вышесказанного следует признать, что эффективные альтернативы для R134a, которые бы сочетали ультранизкий ПГП с негорючестью, пока недоступны.
Будущее технологий для компрессоров центробежного типа
Компрессоры центробежного всегда считались решением, более подходящим для ситуаций, требующих большой холодильной мощности. При этом на протяжении долгого времени ведутся исследования и разработки в области малых центробежных компрессоров для бытовых или малых полупромышленных тепловых насосов.
Жан-Батист Карре (Jean-Baptiste Carré) в 2016 году сообщил об экспериментальном исследовании, в рамках которого был создан бытовой тепловой насос «воздух-вода» мощностью 6 кВт на базе безмасляного двухступенчатого компрессора на подшипниках с газовой смазкой. По габаритам данный компрессор сопоставим с существующими спиральными компрессорами на хладагенте R410A.
В 2018 году К. Контомарис (K. Kontomaris) с соавторами опубликовали отчет об исследовании, направленном на выявление оптимального хладагента для центробежных компрессоров малой и средней мощности (от 10 до 250 кВт), подшипники которых используют газовую смазку. Исследование показало, что хладагенты среднего давления позволяют достичь высокой энергоэффективности при применении в малогабаритных компрессорах с высокой скоростью вращения.
Вода (R718) является идеальным хладагентом для парокомпрессионных систем, так как она нетоксична, не горюча, не способствует глобальному потеплению и сравнима по эффективности с традиционными гидрофторуглеродными (ГФУ) хладагентами. При этом объем всасывания для воды должен быть примерно в 160 больше, чем для R134a. Следовательно, необходимы большие центробежные и осевые компрессоры с высокой степенью сжатия.
Разработка чиллеров, использующих воду в качестве хладагента, ведется в контексте ограничений производства и потребления фторуглеродов. В 2010-х годах компания Kobelco применила осевой компрессор на воде при создании водоохлаждаемого чиллера. В 2013 году Kawasaki Heavy Industries выпустила на рынок 350-киловаттный чиллер на базе центробежного компрессора, использующего воду в качестве хладагента. Компания Efficient Energy предложила небольшой водоохлаждаемый чиллер на воде под названием eChiller. Первоначально мощность устройства на базе центробежного компрессора составляла 35/45 кВт, но в 2020 году была увеличена до 120 кВт.
В 2020 году, Е. Верп (Е. Verpe) с соавторами опубликовали результаты исследования применения воды как хладагента для тепловых насосов. В экспериментальном исследовании изучалась работа высокотемпературного теплового насоса на базе двухступенчатого компрессора центробежного типа, способного поднять температуру насыщения водяного пара с 100 до 146°С.
Винтовые компрессоры
Прогресс технологий
Винтовой компрессор — это компрессор объемного сжатия, в котором поступивший со стороны всасывания газообразный хладагент сжимается за счет уменьшения содержащего его объема при вращении прилегающих роторов.
Существуют три вида винтовых компрессоров: сдвоенного типа, с одним винтом и трехроторные. Компрессоры сдвоенной конструкции, включающей ведущий и ведомый роторы, появились в 1930-х годах и на сегодняшней день являются основным видом винтовых компрессоров на рынке. Первый полугерметичный винтовой компрессор сдвоенного типа с системой впрыска масла, предназначавшийся для использования в составе чиллеров с водяным охлаждением конденсатора, был создан в 1960-х годах. Он появился в качестве ответа на потребность рынка в устройстве, холодопроизводительность которого была бы выше доступной поршневым компрессорам, но при этом ниже, чем у компрессоров центробежного типа. Компрессор с одним винтовым ротором и двумя ведомыми шестернями применяется в системах охлаждения с 1970-х годов. Трехроторная конструкция с регулируемой скоростью вращения, состоящая из одного ведущего и двух ведомых роторов, была разработана для использования в чиллерах с водяным охлаждением в начале 2000-х годов. Эти виды компрессоров отличаются компоновкой, но построены на одном и том же принципе.
Габариты винтовых компрессоров ограничены возможной деформацией роторов, максимально допустимой нагрузкой на подшипники и предельной скоростью вращения. Однако нет существенных ограничений, касающихся разности давлений. Это заметно расширяет рабочий диапазон и, соответственно, область применения винтовых компрессоров. В результате они используются в водо- и воздушноохлаждаемых чиллерах, тепловых насосах, холодильных установках и промышленном оборудовании для сжижения газа.
Основными факторами, влияющими на эффективность винтовых компрессоров, являются утечки из-за неплотного прилегания роторов и потери из-за трения при движении роторов друг относительно друга. За последние несколько лет при помощи современных инструментов компьютерного моделирования и усовершенствования технологий производства форма роторов была оптимизирована.
В результате, общую эффективность винтовых компрессоров удалось повысить до уровня, соответствующего или даже превышающего эффективность малых и средних компрессоров центробежного типа. Одновременно с этим внедрение систем регулирования, управляющих скоростью вращения моторов на постоянных магнитах и использующих переменное объемное отношение (VVR), позволило повысить эффективность работы винтовых компрессоров в нештатных условиях.
Винтовые компрессоры для природных хладагентов
С ужесточением ограничений, касающихся потребления ГФУ, в холодильных системах и промышленном оборудовании все шире используются природные хладагенты. Ведущие поставщики компрессоров расширяют линейки устройств винтового типа, рассчитанных на работу с природными хладагентами.
Аммиак используется в качестве хладагента для промышленного холодильного оборудования на протяжении многих лет. Этот хладагент отличается высокой эффективностью цикла и низкой стоимостью, но при этом токсичен и способен вступать в реакцию с медью. Компании Kobelco и Mayekawa разработали и выпустили на рынок полугерметичные одно- и двухступенчатые винтовые компрессоры для аммиака. Для предотвращения коррозии обмотки электродвигателей этих компрессоров выполнены из алюминия. Svenska Rotor Maskiner (SRM), входящая в Snowman Group, также представила линейку полугерметичных одно- и двухступенчатых винтовых компрессоров для аммиака с алюминиевыми обмотками электродвигателей. GEA разработала полугерметичные винтовые компрессоры на аммиаке для использования в составе систем кондиционирования воздуха.
На сегодняшний день диоксид углерода (CO2) признан надежным и экологически безопасным хладагентом для систем охлаждения супермаркетов и промышленного холодильного оборудования. GEA поставляет компрессоры для CO2 с приводом открытого типа, рассчитанные на давление в 6,3 МПа. В их конструкции использованы роторы высокой прочности с комбинацией канавок 6/8.
Пропан (R290) – высокоэффективный хладагент с низким ПГП, имеющий класс пожароопасности А3 (горючий). Он применяется не только в бытовых кондиционерах, но и в холодильных установках и чиллерах. Компании Bitzer и Frascold выпускают полугерметичные винтовые компрессоры мощностью от 40 до 390 л. с. (30 – 286 кВт), специально разработанные для использования с R290.
Будущее технологий для винтовых компрессоров
Усилия многих инженеров сконцентрированы на оптимизации профиля роторов винтовых компрессоров сдвоенного типа. Кроме того, ведутся работы по поиску оптимальной компоновки элементов конструкции с одним ротором. Результаты исследования нового типа однороторных винтовых компрессоров с тремя канавками на главном роторе и десятизубцовыми ведомыми звездочками опубликовали А. Данпут (A. Dhunput) с соавторами в 2019 году. Как сообщается, новая конфигурация повышает интегральный показатель эффективности при неполной нагрузке (IPLV) на 7% по сравнению с традиционной компоновкой.
Считается, что хладагенты низкого давления не подходят для компрессоров объемного сжатия винтового типа. Однако в 2018 году была опубликована работа М. Акеи (M. Akei), описывающая конструкцию, включающую винтовой мини-компрессор для хладагента низкого давления. По габаритам и мощности этот компрессор, использующий два сдвоенных ротора, приводимых в движение высокоскоростным электродвигателем на постоянных магнитах, сравним с существующими спиральными компрессорами на R410A.
Винтовые детандеры для органического цикла Ренкина
Системы, использующие органический цикл Ренкина для преобразования бросового тепла в электроэнергию, находят все более широкое применение в различных отраслях промышленности. Как правило, эти установки, также называемые бинарными генераторами, так как они одновременно производят тепло и электричество, используют в качестве рабочего тела хладагенты низкого давления, такие как R245fa, R1233zd(E) и R1224yd(Z).
В подобных системах применяют детандеры центробежного и винтового типов. Kobelco разработала микросистему бинарной генерации на базе полугерметичного винтового детандера, способную производить до 72 кВт электроэнергии и подавать горячую воду. В качестве источника тепла используется отводящая бросовое тепло вода, нагретая до 70-95°С.
В настоящее время интерес вызывает одновинтовая конструкция детандера. Исследование, посвященное оценке показателей эффективности одновинтового детандера для органического цикла Ренкина с R1233zd(E) в качестве рабочего тела, опубликовано в 2017 году Д. Дзивиани (D. Ziviani) с соавторами.
По материалам JARN